Fractional Kinetics for Relaxation and Superdiffusion in Magnetic Field

نویسنده

  • A. V. Chechkin
چکیده

We propose fractional Fokker-Planck equation for the kinetic description of relaxation and superdiffusion processes in constant magnetic and random electric fields. We assume that the random electric field acting on a test charged particle is isotropic and possesses non-Gaussian Levy stable statistics. These assumptions provide us with a straightforward possibility to consider formation of anomalous stationary states and superdiffusion processes, both properties are inherent to strongly non-equilibrium plasmas of solar systems and thermonuclear devices. We solve fractional kinetic equations, study the properties of the solution, and compare analytical results with those of numerical simulation based on the solution of the Langevin equations with the noise source having Levy stable probability density. We found, in particular, that the stationary states are essentially non-Maxwellian ones and, at the diffusion stage of relaxation, the characteristic displacement of a particle grows superdiffusively with time and is inversely proportional to the magnetic field. PACS: 05.10 Gg, 05.40. Fb

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markovian embedding of fractional superdiffusion

The Fractional Langevin Equation (FLE) describes a non-Markovian Generalized Brownian Motion with long time persistence (superdiffusion), or anti-persistence (subdiffusion) of both velocity-velocity correlations, and position increments. It presents a case of the Generalized Langevin Equation (GLE) with a singular power law memory kernel. We propose and numerically realize a numerically efficie...

متن کامل

Distributed - Order Fractional Kinetics ∗

Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. For processes lacking such scaling the corresponding description may be given by distributed-order equations. In the present paper we consider different forms of distributed-order fractional kinetic equations and investigate the effects descri...

متن کامل

Magnetohydrodynamic Free Convection Flows with Thermal Memory over a Moving Vertical Plate in Porous Medium

The unsteady hydro-magnetic free convection flow with heat transfer of a linearly viscous, incompressible, electrically conducting fluid near a moving vertical plate with the constant heat is investigated. The flow domain is the porous half-space and a magnetic field of a variable direction is applied. The Caputo time-fractional derivative is employed in order to introduce a thermal flux consti...

متن کامل

Effect of Magnetic Field and a Mode-I Crack 3D-Problem in Micropolar Thermoelastic Cubic Medium Possessing Under Three Theories

A model of the equations of two dimensional problems in a half space, whose surface in free of micropolar thermoelastic medium possesses cubic symmetry as a result of a Mode-I Crack is studied. There acts an initial magnetic field parallel to the plane boundary of the half- space. The crack is subjected to prescribed temperature and stress distribution. The formulation in the context of the Lor...

متن کامل

On tumor development: fractional transport approach

A growth of malignant neoplasm is considered as a fractional transport approach. We suggested that the main process of the tumor development through a lymphatic net is fractional transport of cells. In the framework of this fractional kinetics we were able to show that the mean size of main growth is due to subdiffusion, while the appearance of metaphases is determined by superdiffusion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008